

Available online at www.sciencedirect.com



Tetrahedron Letters

Tetrahedron Letters 49 (2008) 3797-3801

# Tonkinensines A and B, two novel alkaloids from Sophora tonkinensis

Xing-Nuo Li<sup>a,b</sup>, Zhi-Qiang Lu<sup>a</sup>, Song Qin<sup>a</sup>, Hai-Xia Yan<sup>b</sup>, Min Yang<sup>a</sup>, Shu-Hong Guan<sup>a</sup>, Xuan Liu<sup>a</sup>, Hui-Ming Hua<sup>b</sup>, Li-Jun Wu<sup>b</sup>, De-An Guo<sup>a,\*</sup>

<sup>a</sup> Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica,

Chinese Academy of Sciences, 199 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China

<sup>b</sup> School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China

Received 7 December 2007; revised 29 March 2008; accepted 1 April 2008

Available online 4 April 2008

# Abstract

Tonkinensines A (1) and B (2), two novel cytisine-type alkaloids that feature the skeleton with a linkage to pterocarpan, were isolated from the roots of *Sophora tonkinensis*. Their structures and absolute configurations were elucidated by spectroscopic methods, especially X-ray crystal diffraction and CD spectral analysis. The proposed biosynthetic pathway was also discussed. Both 1 and 2 were tested in HeLa and MDA-MB-231 tumor cell lines, and compound 2 showed moderate cytotoxic activity. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Sophora tonkinensis; Quinolizidine alkaloids; Tonkinensine A; Tonkinensine B

Sophora tonkinensis (Leguminosae) is an important traditional Chinese herbal plant, namely Shan-Dou-Gen in Chinese. Its roots and rhizomes were used for the treatment of acute pharyngolaryngeal infections and sore throats.<sup>1</sup> Phytochemical investigations have revealed that the plant accumulated lupin alkaloids and flavones as its main constituents. Cytisine-type alkaloids are a class of natural occurring lupin alkaloids that exhibit partial agonist activity toward neuronal nicotinic acetylcholine receptors with specificity for the  $\alpha 4\beta 2$  subtype.<sup>2</sup> Currently, there is much interest in developing 'cytisine-like' nicotinic agonists for the treatment of various CNS disorders and for assisting smoking cessation.<sup>3</sup> Pterocarpans are isoflavonoids found in many species of Leguminosae possessing high antifungal and antibacterial activities.<sup>4</sup> Several pterocarpans have been reported to inhibit HIV-1 reverse transcriptase and the cytopathic effect of HIV-1 in cell cultures.<sup>5</sup> In this Letter, we describe the isolation, structural elucidation, postulated biogenetic formation, and biological activity of tonkinensines A (1) and B (2). To our knowledge, this is the first report of the existence of cytisine-type alkaloids that feature the skeleton with a linkage to the pterocarpan.

The air-dried and ground root materials (9 kg) were extracted with 95% EtOH to give 600 g of crude extract, which was dissolved in 5 L of H<sub>2</sub>O to form a suspension and adjusted to pH 3 with 2 M HCl. The aqueous layer was then basified to pH 10 with 5% Na<sub>2</sub>CO<sub>3</sub> and extracted with CHCl<sub>3</sub> (4000 mL  $\times$  3) to obtain 150 g of crude alkaloids. The crude alkaloids were chromatographed on a silica gel column (CHCl<sub>3</sub>/MeOH, 1:0-0:1) to give six fractions 1-6. Fraction 5 (10 g) was separated on a silica gel H column (CHCl<sub>3</sub>/MeOH, 50:1–5:1) to afford (-)-trifolirhizin (3) and (-)-cytisine (4) (Fig. 1). Fraction 1 (4 g) was extensively separated over silica gel H and Sephadex LH-20, and further purified on semi-preparative HPLC (Agilent 1100 pump and Agilent 1100 VWD detector, Alltima ODS column,  $250 \times 10$  mm, CH<sub>3</sub>OH/H<sub>2</sub>O 73:27) to yield 1 (5 mg) and 2 (15 mg) (Fig. 1). And the precipitations (600 g) were chromatographed on a silica gel column (petroleum ether/ EtOAc, 30:1-0:1) to afford (-)-maackiain (5).

Tonkinensine A (1),<sup>6</sup> a colorless gum ( $[\alpha]_D^{20}$  –334 (*c* 0.11, CHCl<sub>3</sub>)), showed the molecular formula of C<sub>28</sub>H<sub>26</sub>N<sub>2</sub>O<sub>6</sub> as determined by HRESIMS at *m*/*z* 509.1672 [M+Na]<sup>+</sup> (calcd

<sup>\*</sup> Corresponding author. Tel.: +86 21 50271516; fax: +86 21 50272789. *E-mail address:* gda5958@163.com (D.-A. Guo).

<sup>0040-4039/\$ -</sup> see front matter  $\odot$  2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.04.003



(-)-cytisine (**4**)

Fig. 1. Structures of tonkinensine A (1), tonkinensine B (2), (-)-trifolirhizin (3), (-)-cytisine (4), and (-)-maackiain (5).

509.1689), requiring 17 double bond equivalents. The IR absorptions revealed the presence of hydroxyl group (3431 cm<sup>-1</sup>) and conjugated amide carbonyl (1649 cm<sup>-1</sup>) functionality. The <sup>13</sup>C NMR and DEPT spectra resolved 28 carbon signals, which were classified by chemical shifts and HSQC spectrum as one carbonyl, nine sp<sup>2</sup> quaternary carbons, seven sp<sup>2</sup> methines, one methylenedioxy, six sp<sup>3</sup> methylenes, and four sp<sup>3</sup> methines. Among them, four methylenes ( $\delta_C$  49.5,  $\delta_H$  3.88 and 4.11;  $\delta_C$  59.4,  $\delta_H$  2.34 and 3.11;  $\delta_C$  60.7,  $\delta_H$  2.45 and 3.03;  $\delta_C$  60.9,  $\delta_H$  3.51 and 3.61) were ascribed to those bearing a nitrogen atom, while five sp<sup>2</sup> quaternary carbons ( $\delta_C$  141.7;  $\delta_C$  148.1;  $\delta_C$  154.1;  $\delta_C$  156.4;  $\delta_C$  159.0), one sp<sup>3</sup> methylenes ( $\delta_C$  68.3), and one sp<sup>3</sup> methines ( $\delta_C$  78.7) were assigned to those bearing oxygen atoms (Table 1).

Detailed analysis of the 2D NMR spectra of 1 revealed that it was composed of two moieties (Fig. 2). One contained four rings (rings A, B, C, and D) and the <sup>1</sup>H NMR spectrum showed signals at  $\delta_{\rm H}$  4.16 (1H, dd),  $\delta_{\rm H}$ 3.55 (1H, m),  $\delta_{\rm H}$  3.39 (1H, m), and  $\delta_{\rm H}$  5.38 (1H, d), which were consistent with the presence of a pterocarpan skeleton,<sup>7</sup> and two sets of aromatic protons were also present for a pair of 1,2,4,5-tetrasubstituted benzenes [ $\delta_{\rm H}$  7.04 (1H, s) and  $\delta_{\rm H}$  6.31 (1H, s);  $\delta_{\rm H}$  6.70 (1H, s) and  $\delta_{\rm H}$  6.41 (1H, s)]. The <sup>1</sup>H and <sup>13</sup>C NMR data were similar to those of (–)-maackiain,<sup>8</sup> showing an identical pattern for the signals corresponding to rings B, C, and D. In the ROESY spectrum, the proton at  $\delta_{\rm H}$  3.39 (H-6'a) showed correlations to a methylenes proton at  $\delta_{\rm H}$  4.16 (H-6'eq), a methine proton at  $\delta_{\rm H}$  5.38 (H-11'a), and an olefinic proton at  $\delta_{\rm H}$  6.70 (H-7'). This indicated that the right moiety possessed the more stable cis-junction of rings B and C. Another moiety, an  $\alpha$ -pyridone ring, was confirmed by the <sup>1</sup>H NMR spectrum, which showed signals at  $\delta_{\rm H}$  6.51 (dd, J = 9.2, 1.2 Hz),  $\delta_{\rm H}$  7.29 (dd, J = 9.2, 6.8 Hz), and  $\delta_{\rm H}$  5.97 (dd, J = 6.8, 1.2 Hz), corresponding to H-3, H-4, and H-5, respectively. The H-10 $\alpha$  ( $\delta_{\rm H}$  4.11) and H-10 $\beta$  $(\delta_{\rm H} 3.88)$  were also characteristic for pyridone-type quinolizidine alkaloids.<sup>9</sup> The <sup>1</sup>H NMR spectrum showed essentially similar signals to those of (-)-cytisine (4), which was previously isolated from this plant (Supplementary data). The comparison of their <sup>13</sup>C NMR spectra revealed that the signals of C-11 and C-13 were shifted downfield in the range of  $\delta 6-7$  ppm. Furthermore, in HMBC spectrum, the cross-peaks of H<sub>2</sub>-14 to C-11, C-13, C-1', C-2', and C-3' suggested that the right and left moieties are connected by a bond C(14)-C(2'). Thus, the basic structure of 1, possessing an unprecedented skeleton, was established as shown in Figure 1.

Tonkinensine **B** (2),<sup>10</sup> colorless crystals (in MeOH),  $[\alpha]_D^{20}$ -327 (*c* 0.11, CHCl<sub>3</sub>), showed the molecular formula of C<sub>28</sub>H<sub>26</sub>N<sub>2</sub>O<sub>6</sub> as determined by HRESIMS at *m/z* 509.1671 [M+Na]<sup>+</sup> (calcd 509.1689), requiring 17 double bond equivalents, which was identical to those of **1**. The

Table 1 <sup>1</sup>H and <sup>13</sup>C NMR data of **1** and **2** (in CDCl<sub>3</sub>)

| No.            | 1                                                                |                            | 2                                                                |                            |
|----------------|------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|----------------------------|
|                | $\overline{\delta_{\rm H}}  ({\rm mult},  J,  {\rm Hz})^{\rm a}$ | $\delta_{\rm C}{}^{\rm b}$ | $\overline{\delta_{\rm H}}  ({\rm mult},  J,  {\rm Hz})^{\rm a}$ | $\delta_{\rm C}{}^{\rm b}$ |
| 2              |                                                                  | 163.4 s                    |                                                                  | 163.5 s                    |
| 3              | 6.51 (dd, 1.2, 9.2)                                              | 117.7 d                    | 6.51 (dd, 1.2, 9.2)                                              | 117.6 d                    |
| 4              | 7.29 (dd, 6.8, 9.2)                                              | 138.7 d                    | 7.28 (dd, 6.8, 9.2)                                              | 138.7 d                    |
| 5              | 5.97 (dd, 1.2, 6.8)                                              | 104.9 d                    | 5.96 (dd, 1.2, 6.8)                                              | 105.1 d                    |
| 6              | _                                                                | 149.4 s                    | _                                                                | 149.3 s                    |
| 7              | 3.05 (m)                                                         | 35.1 d                     | 3.02 (m)                                                         | 35.0 d                     |
| 8α             | 1.86 (br d, 12.8)                                                | 25.8 t                     | 1.84 (br d, 12.8)                                                | 25.8 t                     |
| 8β             | 1.97 (br d, 12.8)                                                |                            | 1.96 (br d, 12.8)                                                |                            |
| 9              | 2.51 (br s)                                                      | 27.6 d                     | 2.50 (br s)                                                      | 27.7 d                     |
| 10α            | 4.11 (br d, 15.6)                                                | 49.5 t                     | 4.13 (br d, 16.0)                                                | 49.5 t                     |
| 10β            | 3.88 (dd, 6.4, 15.6)                                             |                            | 3.89 (dd, 6.4, 16.0)                                             |                            |
| 11α            | 2.34 (br d, 11.6)                                                | 59.4 t                     | 2.39 (br d, 11.2)                                                | 59.5 t                     |
| 11β            | 3.11 (br d, 11.6)                                                |                            | 3.10 (br d, 11.2)                                                |                            |
| 13a            | 2.45 (br d, 8.8)                                                 | 60.7 t                     | 2.44 (m)                                                         | 60.5 t                     |
| 13β            | 3.03 (m)                                                         |                            | 2.99 (m)                                                         |                            |
| 14α            | 3.51 (d. 13.6)                                                   | 60.9 t                     | 3.66 (d. 14.4)                                                   | 53.6 t                     |
| 14β            | 3.61 (d, 13.6)                                                   |                            | 3.70 (d, 14.4)                                                   |                            |
| 1′             | 7.04 (s)                                                         | 130.6 d                    | 7.21 (d. 8.4)                                                    | 130.7 d                    |
| 2'             |                                                                  | 115.2 s                    | 6.43 (d, 8.4)                                                    | 110.7 d                    |
| 3'             |                                                                  | 159.0 s                    |                                                                  | 159.4 s                    |
| 4'             | 6.31 (s)                                                         | 104.4 d                    | _                                                                | 108.0 s                    |
| 4′a            |                                                                  | 156.4 s                    |                                                                  | 153.8 s                    |
| 6'ax           | 3.55 (t. 11.2)                                                   | 66.3 t                     | 3.55 (t. 11.2)                                                   | 66.6 t                     |
| 6'eq           | 4.16 (dd. 4.8, 11.2)                                             |                            | 4.18 (dd. 4.8, 11.2)                                             |                            |
| 6'a            | 3.39 (m)                                                         | 40.2 d                     | 3.40 (m)                                                         | 40.0 d                     |
| 6′b            | _ ( )                                                            | 118.1 s                    | _                                                                | 118.0 s                    |
| 7'             | 6.70 (s)                                                         | 104.8 d                    | 6.69 (s)                                                         | 104.6 d                    |
| 8′             |                                                                  | 141.7 s                    |                                                                  | 141.6 s                    |
| 9′             |                                                                  | 148.1 s                    | _                                                                | 148.1 s                    |
| 10'            | 6.41 (s)                                                         | 93.7 d                     | 6.40 (s)                                                         | 93.8 d                     |
| 10′a           |                                                                  | 154.1 s                    |                                                                  | 154.3 s                    |
| 11′a           | 5.38 (d. 6.4)                                                    | 78.7 d                     | 5.42 (d. 6.4)                                                    | 79.0 d                     |
| 11′b           |                                                                  | 110.7 s                    |                                                                  | 110.6 s                    |
| Methylenedioxy | 5.88 (d, 1.6)                                                    | 101.3 t                    | 5.88 (d, 1.6)                                                    | 101.2 t                    |
|                | 5.91 (d, 1.6)                                                    |                            | 5.90 (d, 1.6)                                                    |                            |

<sup>13</sup>C multiplicities were determined by DEPT or by HSQC experiments.

<sup>a</sup> Recorded at 400 MHz.

<sup>b</sup> Recorded at 100 MHz.

IR absorptions revealed the presence of hydroxyl group  $(3438 \text{ cm}^{-1})$  and conjugated amide carbonyl  $(1651 \text{ cm}^{-1})$  functionality.

Comparison of the <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of **2** with those of **1** (Table 1) revealed that they have the different substitution patterns in ring A. The two aromatic protons at  $\delta_{\rm H}$  7.21 (d, J = 8.4 Hz) and  $\delta_{\rm H}$  6.43 (d, J = 8.4 Hz) showed the presence of 3',4'-disubstituted A ring. And the ROESY correlations of H<sub>6'a</sub> ( $\delta_{\rm H}$  3.40)/H<sub>6eq</sub> ( $\delta_{\rm H}$  4.18), H<sub>6'a</sub> ( $\delta_{\rm H}$  3.40)/H<sub>11'a</sub> ( $\delta_{\rm H}$  5.42), and H<sub>6'a</sub> ( $\delta_{\rm H}$  3.40)/H<sub>7'</sub> ( $\delta_{\rm H}$  6.69) implied that the rings B and C had the same pattern of junction as **1**. Furthermore, the cross-peaks of H<sub>2</sub>-14 to C-11, C-13, C-3', C-4', and C-4'a in HMBC spectrum (Fig. 2) indicated that the right and left moieties were connected by a bond C(14)–C(2'). Thus, the planar structure of **2** was established as shown in Figure 1.

The relative stereochemistry of **1** and **2** was identical, as supported by their <sup>1</sup>H NMR, <sup>13</sup>C NMR, HSQC, HMBC, <sup>1</sup>

 $H^{-1}H$  COSY, ROESY spectra (Supplementary data), and the optical rotation values. The relative configuration and structure of **2** were confirmed by the X-ray crystallographic analysis (Fig. 3).<sup>11</sup>

A plausible biosynthetic pathway for tonkinensines A (1) and B (2) was proposed as illustrated in Scheme 1. (-)-Cytisine (4) and (-)-maackiain (5) [the aglycone of (-)-trifolirhizin (3)] might be the precursors for these metabolites. Formation of the 'C-14' bridge could be resulted from an oxidative coupling process in which the *N*-methyl group of (-)-*N*-methylcytisine might be oxidized to an iminium ion, and a linkage to (-)-maackiain (5) could occur by virtue of the phenolic group.<sup>12</sup>

The absolute configurations of tonkinensines A (1) and B (2) were determined by the CD spectral analysis (Fig. 4). The negative Cotton effect at 310 nm and the positive Cotton effect at 230 nm were very similar to that of (-)-cytisine (4) (Fig. 4), whose absolute configuration was



Fig. 2. Key HMBC and  ${}^{1}H{-}{}^{1}H$  COSY correlations of tonkinensines A (1) and B (2).



Fig. 3. X-ray structure of tonkinensine B (2).



Fig. 4. CD and UV spectra of tonkinensine A(1), tonkinensine B(2), and (-)-cytisine (4).

assigned as 7*R*, 9*S* by CD and chemical means, suggesting that the left moiety of compound 1 and 2 also had the 7*R*, 9*S*-configuration.<sup>13</sup> Based on the aforementioned results, the X-ray structure of 2 (Fig. 3), and the precursors of the plausible biosynthetic pathway [(-)-cytisine (4) and (-)-maackiain (5)] obtained from this plant, the absolute configurations in the right moiety of 1 and 2 were confirmed as 6'a*R* and 11'a*R*. Thus, the absolute configurations of tonkinensines A (1) and B (2) were assigned as 7*R*, 9*S*, 6'a*R*, 11'a*R*.

Tonkinensines A (1) and B (2) were tested for their in vitro cytotoxicity against the HeLa (human cervical carcinoma) and MDA-MB-231 (human breast tumor) cell lines by using the MTT<sup>14</sup> method with adriamycin as a positive control ( $IC_{50} = 0.405 \pm 0.003 \mu$ M against HeLa cells and  $IC_{50} = 3.37 \pm 0.05 \mu$ M against MDA-MB-231 cells), and compound 2 showed moderate cytotoxic activity against



Scheme 1. A plausible biogenetic pathway for 1 and 2.

the HeLa  $(IC_{50} = 24.3 \pm 0.3 \ \mu\text{M})$  and MDA-MB-231  $(IC_{50} = 48.9 \pm 0.5 \ \mu\text{M})$  cell lines.

## Acknowledgments

We thank National Supporting Program for TCM from Ministry of Science and Technology of China (2006 BAI 08B03-03) for financial support of this work.

### Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008.04. 003.

### **References and notes**

- 1. The Pharmacopoeia of the People's Republic of China; The Chemical Industry Press: Beijing, China, 2005; Vol. 1, p 19.
- (a) Pabreza, L. A.; Dhawan, S.; Kellar, K. J. Mol. Pharmacol. 1991, 39, 9; (b) Heinemann, S. F.; Papke, R. L. Mol. Pharmacol. 1994, 45, 142; (c) Anderson, D. J.; Arneric, S. P. Eur. J. Pharmacol. 1994, 253, 261.
- 3. Darren, S.; O'Brien, P. *Tetrahedron* 2007, 63, 1885 and references cited therein.
- 4. (a) Zechmeister, L. In *Progress in the Chemistry of Organic Natural Products*; Springer : New York, 1983; Vol. 43; Chapter 1, pp 1–22; (b) Donnelly, D. M. X.; Boland, G. M. *Nat. Prod. Rep.* 1995, 321 and previous reviews cited therein.
- (a) Engler, T. A.; Lynch, O. K.; Reddy, J. P., Jr.; Gregory, G. S. Bioorg. Med. Chem. Lett. 1993, 3, 1229; (b) Engler, T. A.; Lynch, O. K., ; Reddy, J. P., Jr.; Iyengar, R.; Chain, W.; Agrios, K. Bioorg. Med. Chem. Lett. 1996, 4, 1755.
- 6. Tonkinensine A (1): colorless gums (CHCl<sub>3</sub>);  $[\alpha]_D^{20} 334$  (*c* 0.11, CHCl<sub>3</sub>); UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 205 (3.89), 231 (3.45), 308 (3.00) nm; CD (*c* 0.45, MeOH) [ $\theta$ ]<sub>307</sub> -11.454, [ $\theta$ ]<sub>244</sub> -5.218, [ $\theta$ ]<sub>228</sub> +5.281; IR (KBr)  $\nu_{max}$  3431, 2922, 2852, 1649, 1547, 1473, 1460, 1134 cm<sup>-1</sup>; <sup>1</sup>H

NMR and <sup>13</sup>C NMR, see Table 1; positive ESIMS m/z (rel int) 487  $[M+H]^+$  (100); negative ESIMS m/z (rel int) 485  $[M-H]^-$  (100); HRESIMS m/z 509.1672  $[M+Na]^+$  (calcd for  $C_{28}H_{26}N_2O_6Na$ , 509.1689).

- (a) Sakurai, Y.; Sakurai, N.; Taniguchi, M.; Nakanishi, Y.; Bastow, K. F.; Wang, X.; Cragg, G. M.; Lee, K.-H. J. Nat. Prod. 2006, 69, 397; (b) Tanaka, Hitoshi; Tanaka, Toshihiro; Etoh, Hideo Phytochemistry 1998, 47, 475.
- 8. Màximo, P.; Lourenço, A. *Phytochemistry* **1998**, *48*, 359. and references cited therein.
- Anne-Lise, S.; Jurg, G.; Rita, B.; Jorg, H.; Otto, S. *Phytochemistry* 2002, 61, 975 and references cited therein.
- 10. Tonkinensine **B** (2): colorless crystals (in MeOH); mp 258–260 °C;  $[\alpha]_{20}^{20}$  -327 (c 0.11, CHCl<sub>3</sub>); UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 204 (3.85), 233 (3.51), 309 (3.18) nm; CD (c 0.47, MeOH) [ $\theta$ ]<sub>310</sub> -12.076,  $[\theta]_{243}$  - 7.790,  $[\theta]_{227}$  +8.929; IR (KBr)  $\nu_{max}$  3438, 2918, 2848, 1651, 1547, 1475, 1460, 1146 cm<sup>-1</sup>; <sup>1</sup>H NMR and <sup>13</sup>C NMR, see Table 1; positive ESIMS *m/z* (rel int) 487 [M+H]<sup>+</sup> (100); negative ESIMS *m/z* (rel int) 485 [M-H]<sup>-</sup> (100); HRESIMS *m/z* 509.1671 [M+Na]<sup>+</sup> (calcd for C<sub>28</sub>H<sub>26</sub>N<sub>2</sub>O<sub>6</sub>Na, 509.1689).
- Crystallographic data for tonkinensine B (2) have been deposited at the Cambridge Crystallographic Data Centre (deposition no. CCDC-665443). Copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK. [fax: (+44) 1223-336-033; or email: deposit@ccdc.cam.ac.uk].
- (a) Dewick, Paul M. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed.; John Wiley & Sons, Ltd : England, 2002; pp 18 and 340; (b) Mothes, K.; Schütte, H. R.; Luckner, M. Biochemistry of Alkaloids; VEB Deutscher Verlag der Wissenschaften: Berlin, 1985; p 228.
- (a) Satoshi, T.; Kazuki, S.; Shigeru, O.; Nijsiri, R.; Isamu, M. *Phytochemistry* 1991, 30, 3793; (b) Kazuki, S.; Satoshi, T.; Toshikazu, S.; Fumio, I.; Shigeru, O.; Hajime, K.; Hirotaka, O.; Isamu, M. *Phytochemistry* 1989, 28, 958.
- Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R. *Cancer Res.* **1988**, *48*, 589.